完全体内埋込型人工心臓駆動用経皮エネルギー伝送システム -空心型経皮トランスのコイル寸法検討による結合特性の向上-

Transcutaneous Energy Transmission System for a Totally-Implantable Artificial Heart -Improvement of Coupling Characteristics by Investigation of Coil diameter-

○ 若林春貴,山本隆彦,越地耕二(東京理科大学) 巽英介,妙中義之(国立循環器病研究センター研究所)

Haruki WAKABAYASHI, Takahiko YAMAMOTO, Kohji KOSHIJI (Tokyo University of Science) Eisuke TATSUMI, Yoshiyuki TAENAKA (National Cerebral and Cardiovascular Center Research Institute) *Key Words*: Artificial Heart, TETS, Coreless Coil, Coupling Factor

1.はじめに

医療機器におけるワイヤレス電力伝送技術とは、非接触、低侵襲といった言葉に代表されるように、体内埋込型機器へのエネルギー供給方法として不可欠な技術である。人工心臓へのワイヤレス電力伝送は、経皮エネルギー伝送システム(Transcutaneous Energy Transmission System: TETS⁽¹⁾⁻⁽³⁾)と称されている。TETSは、コイル間の電磁誘導によりエネルギーを伝送するシステムで、空心型経皮コイル^{(1),(2)}を用いる。しかしながら、空心型で高い伝送効率を実現するためには、TETSに用いる体内コイルの寸法が大型(外直径 70 mm~100 mm)となる。これは患者の Quality of Life(QOL)の低下につながる。

本稿では, TETS に用いる体内側の空心型経皮コイルの寸 法を小型化し,その体内コイルに対して,結合度の観点から 適した体外コイルの寸法の検討を行ったので報告する.

2. TETS の概要

Fig.1 に代表的な TETS の概要を示す. 体外側においては直 流安定化電源または電池を電源とし、スイッチング回路によ り高周波の交流電力に変換される. 変換された交流電力は経 皮コイルを介し、ケーブルが皮膚を貫通することなく体内へ 伝送される. 伝送された交流電力は整流平滑回路により直流 電力に変換され、人工心臓の駆動および体内の二次電池への 充電に用いられる.

3. 空心型経皮トランスフォーマーの伝送効率

TETS に用いられる経皮コイルとして、空心型や体外結合型⁽³⁾などが開発されているが、本稿では患者の QOL の観点などから空心型を採用した.

Fig.2 に空心型経皮コイルの外観を示す. Fig.3 に空心型経 皮コイルシステムを用いてエネルギー伝送を行う際の等価 回路を示す. L₁, L₂はそれぞれ一次側(体外側),二次側(体内 側)のコイルの自己インダクタンス, r_1 , r_2 はそれぞれ一次側, 二次側のコイルの巻線抵抗, C₁, C₂は伝送効率を向上させる ために挿入する直列共振用のキャパシタ,Mはコイル間の相 互インダクタンス, R_L は人工心臓,整流平滑回路,二次電池 などを等価的に表した負荷抵抗である.伝送角周波数を ω と すると,

Fig.2 Appearance of coreless coil

Fig.3 Equivalent circuit to evaluate efficiency

$$V_{1} = \left\{ r_{1} + j \left(\omega L_{1} - \frac{1}{\omega C_{1}} \right) \right\} I_{1} - j \omega M I_{2}$$

$$\tag{1}$$

$$V_2 = j\omega M I_1 - \left\{ r_2 + j \left(\omega L_2 - \frac{1}{\omega C_2} \right) \right\} I_2$$
(2)

$$V_2 = R_L I_2 \tag{3}$$

と表せる. ここで共振角周波数をω₀とすると,

$$\omega = \omega_0 = \frac{1}{\sqrt{L_1 C_1}} = \frac{1}{\sqrt{L_2 C_2}}$$
(4)

と表せ、このときの伝送効率ηは

$$\eta = \left| \frac{V_2 I_2}{V_1 I_1} \right| = \frac{(\omega_0 M)^2 R_L}{r_1 (r_2 + R_L)^2 + (\omega_0 M)^2 (r_2 + R_L)}$$
$$= \frac{R_L}{\frac{r_1 (r_2 + R_L)^2}{(\omega_0 M)^2} + (r_2 + R_L)}$$
(5)

と表せる. (5)式から伝送効率を高くするためには $(\omega_0 M)^2 >> r_2(r_1+R_1)$ とする必要がある.相互インダクタンンス M は,結合係数を k とすると,

$$M = k_{\sqrt{L_1 L_2}} \tag{6}$$

と表せるため、自己インダクタンスおよび結合係数を大きく することが重要である.

4. 二次(体内)コイル

二次コイルは患者の QOL の観点から,小型にすることが 望ましい.しかしながら,コイルを小型化すると,二次コイ ルの自己インダクタンスおよびコイル間の結合度が低下す る.これは伝送効率の低下の原因となる.そこで,伝送効率 を高く保つために,必要な自己インダクタンスを求めた.

4-1 二次コイルインダクタンスの決定

(5)式において ω_0 M を変数, r_1 =0.5 Ω , r_2 =0.5 Ω , R_L =30 Ω として, 伝送効率を計算した結果を Fig.4 に示す.

 $\omega_0 M$ を増加させると、90%までは急峻に上昇するが、90% を越えると緩やかに上昇した.また伝送効率が95%以上のなる点は $\omega_0 M$ =21 Ω である.結合係数 k=0.3、伝送周波数 f₀=300 kHz とすると、必要なコイルの自己インダクタンスは37 μ H と決定できる.

Fig.4 Calculation result

4-2 二次コイルの検討

小型化の観点から,コイルの外直径を 50 mm とした. 内直 径を決定するために,内直径 15~35 mm の範囲でコイルを試 作し,インダクタンスおよび巻線抵抗を測定した.使用した 巻線は,表皮効果を考慮して,0.10 mm, 15 本束のリッツ線 とした.試作したコイルのインダクタンスを Fig.5 に示す.

Fig.5 から,内直径 15 mm のコイルが巻数が 31 回と最も多いため,自己インダクタンスが最も高い.しかしながら,伝送周波数 300 kHz のとき,自己インダクタンス L=30.1 µH と必要なインダクタンス 37 µH より 6.9 µH 低い.このため,コイル寸法を大型化させることなく,自己インダクタンスを増加させるために,Fig.6 のようにコイルを二層構造にした.

外直径 50 mm を保ち,内直径を 20~30 mm の範囲で二層 構造のコイルを試作し,インダクタンスおよび巻線抵抗を測 定した.測定したインダクタンスおよび巻線抵抗の結果をそ れぞれ Fig.7, Fig.8 に示す.

Fig.5 Inductance of coils

Fig.6 Structure of two layers

Fig.7 Inductance of coils

Fig.8 Resistance of coils

内直径 20~30 mm において、二層化したことにより自己イ ンダクタンスは 3.8 倍に向上した.また、いずれの内直径に おいても、目標値である 37 µH を達成した.しかしながら、 二層化したことにより、巻線抵抗の増加がかなり見られた. コイルを二層化したことにより、巻線抵抗が 2 倍以上に増加 した.巻線抵抗の増加は、伝送効率の低下やコイルの発熱に つながる.そのため、巻線抵抗を減少させるために、断面積 の大きなリッツ線(0.05 mm¢、120 本束)を使用してこれと比 較した.測定したコイルのパラメータを Fig.9 に示す.

Fig.9 Parameter of coils

内直径が 20~25 mm のときに必要な自己インダクタンス 37 μ H より大きくなった.また,巻線抵抗は内直径が 20 mm 以上では 0.5 Ω 以下に低減できた.

以上の結果から、本稿では、エネルギー伝送で使用する二 次コイルは、寸法が外直径 50 mm、内直径 25 mm、使用する 巻線は 0.05 mm, 120 本束のリッツ線で二層構造にしたコイ ルに決定した.

5. 一次(体外)コイルの検討

ー次コイルは体外に設置するため、二次側に比較して外直 径を大きくできる.このため、結合度および伝送効率の観点 から、4-2で決定した二次コイルに適した一次コイルを検討 した.

ー次コイルの内直径を二次コイルと同様に 25 mm として 外直径を 50~90 mm の範囲で変化させて試作した. 使用した 巻線は,0.05 mm, 120 本束のリッツ線である. 試作したコ イルのインダクタンスおよび巻線抵抗を Fig.10,結合係数を Fig.11 に示す. なお,コイル間の距離は,皮膚の厚さおよび コイルをコーティングするシリコーンの厚さを考慮して 10 mm とした.

Fig.10 から,外直径を大きくすることにより,巻数が増加 したため,自己インダクタンスおよび巻線抵抗は増加した. Fig.11 から,結合係数は外直径 65 mm において最大値 0.351 を示し,65 mm 以上では減少した.

測定した一次コイル,二次コイルのパラメータおよびコイル間の結合係数から理論効率を求めた.Fig.12に結果を示す.

外直径が 50 mm~65 mm では伝送効率が急峻に上昇して, 97%の高い伝送を示した.これは,自己インダクタンスおよ びコイル間の結合度が共に上昇しているためである.65 mm 以上ではコイル間の結合度が減少しているため,伝送効率の 増加の割合が低下した.

以上の結果から,結合係数および伝送効率の観点から,4-2 で決定した二次コイルに対する適した一次コイルは,寸法が 外直径 65 mm,内直径 25 mm,巻線 0.05 mm, 120 本束のリ ッツ線で一層構造のコイルと決定できる.

Fig.10 Parameter of coils

Fig.11 Measurement result of coupling factor

Fig.12 Measurement result of transmission efficiency

6. まとめ

本稿では、二次コイルの小型化を検討し、これに適した一 次コイルを、コイル間の結合度の観点から検討した.さらに、 実測した結果から理論効率を算出した.その結果、二次コイ ルは二層構造の外直径 50 mm とし、従来と比較して 50%の 小型化を実現した.また一次コイルは、内直径を二次側と同 じ寸法とし、外直径を 65 mm にした時に、コイル間距離 10 mm において結合係数 0.351、理論伝送効率 97%と高い伝送 効率を実現した.

参考文献

(1)H.Matsuki, M.Shiiki, K.Murakami, T.Yamamoto, S.Nitta,
H.Hashimoto, High Efficient Energy Transmission for Implantable
Artificial Heart, IEEE TRANSLATION JOURNAL ON
MAGNETICS IN JAPAN, vol.8, no.3, pp.187-191, 1993
(2)柴建次,糠谷優之,坂根彰,辻敏夫,越地耕二,人工心臓のための空心型経皮エネルギー伝送システム---次コイル電流による出力電源の安定化制御-, IIP 情報・知能・精密機器部門講演会講演論文集, pp.359-362, 2005
(3)田村望,山本隆彦,青木広宙,越地耕二,本間章彦,巽英

(5) 山村室, 山本陸彦, 肖木広宙, 感地林二, 本間草彦, 巽突 介, 妙中義之, 体内埋込型人工心臓用経皮エネルギー情報伝 送システム-一体型トランスを用いた情報伝送特性の評価・検 討-, 電気学会論文誌.C, 電子・情報・システム部門誌, pp.1176-1177, 2009