受動的な姿勢変調による腓腹筋の筋線維長変化

Measurement of Gastrocnemius muscle fiber length during passive postural modulation

○ 田部井秀明(芝浦工大) 三好扶(岩手大) 山本紳一郎(芝浦工大)

Hideaki TABEI, Shin-ichiro YAMAMOTO, Shibaura Institute of Technology Tasuku MIYOSHI, Iwate University

Key Words: Muscle fiber movement, Center of mass, Ultrasound images

1. 研究背景と目的

ヒトの二足直立姿勢は、矢状面で足関節を回転中心とし た一自由度倒立振子としてモデル化されることが多い. 自 然な立位では身体重心(Center of mass: COM)は足関節の前 方に位置することから,重力に起因したトルクが常に身体 前方へ働く.従って,COM を後方に修正し,姿勢を安定 化させるトルクが必要である.この修正トルクは足関節底 屈共同筋群である下腿三頭筋により発揮される. 下腿三頭 筋は単関節筋であるヒラメ筋(Soleus: SOL), 二関節筋であ る内側腓腹筋(Medial Gastrocnemius: MGAS)と外側腓腹筋 (Lateral Gastrocnemius: LGAS)から成り立つ. 修正トルクの 制御については、Winter らは足関節周りの筋と靭帯・腱な どの関節周辺組織に依存した粘弾性のみに起因すると報告 した⁽¹⁾. 一方, Morasso らは感覚情報を元にした神経系によ る調節も起因していると報告⁽²⁾しており、ヒト立位姿勢制 御に関する足関節トルクやスティフネス制御については未 だに統一的な見解は得られていない.

近年, Maganaris らは腹臥位で足関節背屈動作を行うと MGASの筋線維(Muscle Fiber: MF)が伸張するという解剖学 的な見解と一致する結果を報告した⁽³⁾. これに対して, Loram らはヒト静止立位時に随意的な身体前後動揺を行う と足関節が背屈位にある際に MGAS の MF は短縮するとい う解剖学的な見解とは逆説的な結果"Paradoxicxal muscle movement"を報告した⁽⁴⁾. この二種の姿勢間での差異がヒト 立位姿勢における MGAS の MF の挙動に影響を与えている 可能性が示唆される.

我々の研究では随意的な身体前後動揺と比較するための 立位課題として爪先・踵立ち時の MGAS の MF 動態を計 測・評価を行った⁽⁵⁾. ヒト静止立位時に随意的な身体前後 動揺させると, MGAS の MF は足関節が背屈位において短 縮し, Loram らと同様の結果を得た. 爪先・踵立ち時には, 足関節が背屈位である踵立ち時において MGAS の MF は伸 張する解剖学的な見解と一致する結果が得られた. これよ り,足関節を回転中心とした COM 位置制御が MGAS の筋 活動を機能的に調節している可能性がある.

本研究では、ヒト静止立位時に不随意的な要素が含まれ る受動的な身体前後動揺を行った際、MGAS が足関節回転 中心に対する COM 位置変化に依存した挙動を示すのかど うか検討することを目的とした.

2. 実験方法

2.1 実験手順

外乱による受動的身体前後動揺時と随意的身体前後動揺時の MGAS の筋線維長(Muscle Fiber Length: MFL)の動態を 計測し,筋がどのような挙動を示すか調査する.

被検者は健常成人男性一名.実験のシステム構成を Fig.1 に示した. 足関節と股関節による二自由度の倒立振子モデ

ルで解析するために被検者の両膝関節を副木で固定した. 受動的・随意的身体前後動揺実験において,被検者の右脚 MGAS の MFL を超音波画像診断装置(Aplio,東芝メディカ ル社製,プローブ周波数 8[Mhz])を用いて計測した.また, 筋活動電位(Electromyography: EMG)は MGAS, MGAS の拮 抗筋である前脛骨筋(Tibialis Anterior: TA)を記録した.床反 力計(KISLER 社製, 9286A)の垂直床反力から足圧中心 (Center of Pressure: COP)を算出した. COM と足関節角度・ 股関節角度を算出するために,被検者の身体左右十二ヶ所 (第三中足骨・外顆・外側顆・大転子・骨盤・肩峰)に反射 マーカを取り付け,マーカ位置を三次元動作解析システム (Motion Analysis 社製, HWK-200RT)を用いて計測した. サンプリング周波数は超音波画像を 30[Hz], EMG を 1000[Hz], 反射マーカを 200[Hz]とした.

受動的身体前後動揺実験では,被検者に床反力計付き六軸モーションベース(COSMATE 社製, MB-150)の上で静止 立位を維持してもらい,足関節角度変化を促す矢状面前後 方向の外乱(周波数 0.2[Hz],変位 80[mm])を印加した.計測 は MB-150 の動作を 10 周期分とした.

随意的身体前後動揺実験では、被検者は D/A コンバータ (WE7281,横河電機社製)より出力されたサイン波を目標波 形として追従し、床反力計上で随意的身体前後動揺を 10 周期行った.目標波形は 0.2[Hz]とし、追従波形は足関節・ 中足指節関節に取り付けたゴニオメータ(DKH 社製, SG110)より計測された足関節角度変化とした.

2.2 解析方法

COM, 足関節角度, 股関節角度は三次元動作解析システムより得られたマーカ位置座標から算出した.

MFLの算出は超音波画像診断装置より取得した MF 画像 を用いた(Fig.2). 筋膜と腱膜を直線と仮定し,その二直線 間にある MF 上の二点をプロットする.この二点の延長線

(社) 日本機械学会 [No.10-52] 生活生命支援医療福祉工学系学会連合大会2010講演論文集 〔2010.9.18-20, 豊中〕

と筋膜と腱膜の2 直線との交点間を MFL として算出した. また,足関節・膝関節角度変化による多項式⁽⁶⁾を用いて, MGAS の筋-腱複合体(Muscle-Tendon Complex: MTC)長を算 出した.そして, MFL, MTC 長の値を元に Fig.3 の筋モデ ルから腱(Tendon)長を算出し,筋全体の挙動を確認した.

Fig. 3 MTC model

Fig.4 はヒトの二足直立姿勢を矢状面で足関節を回転中 心とした倒立振子としたモデルである.ここで $m \ge g$ は身 体質量および重力加速度,xは足関節回転中心(外顆)か らの COM までの距離,yは足関節回転中心(外顆)から COP までの距離である. Ankle Torque は足関節トルクであ り,以下の式より算出した.足関節トルクは反時計周りを 正,時計まわりを負とした.

Ankle Torque = COPy - mgx

Fig. 4 Scheme of the inverted pendulum model in the sagittal plane

3. 実験結果

Fig.5~Fig.10 に受動的身体前後動揺と随意的身体前後動揺 の COM 変化,身体変位量の割合,足関節トルク,MFL 変 化,Tendon 変化,MGAS と TA の EMG をそれぞれ示した. これは静止立位を基準として差分をとり,10 周期分を加算 平均したものである.横軸は身体動揺の一周期分である. 受動的身体前後動揺の結果を blue line,随意的身体前後動 揺の結果を red line で示した.

COM が静止立位に対して前方(身体が前傾)にあると 足関節は背屈して,後方(身体が後傾)にあると底屈した (Fig.5).身体変位量の割合において受動的身体前後動揺時, 足関節回転中心は 95.6[%]に対し,随意的身体前後動揺時 では 24.2[%]であった(Fig.6).

足関節トルクは受動的身体前後動揺時と随意的身体前 後動揺時で逆位相の結果が得られた(Fig.7). 受動的身体前 後動揺時,身体が前傾すると足関節トルクは身体を後傾さ せるような反時計方向に作用した.随意的身体前後動揺で は,身体前傾時は随意運動中であるため,身体を前傾させ るような時計方向に作用した.

受動的身体前後動揺において,身体が前傾で MFL は伸張し,Tendon は短縮する傾向が得られた.これは Maganaris らの解剖学的な見解⁽³⁾と一致した.また,MGAS・TA 共に筋活動は随意的身体前後動揺と比べて小さい.随意的身体 前後動揺において,身体が前傾で MFL・Tendon 共に伸張 する傾向が見られた.この MFL の挙動は,Loram ら⁽⁴⁾とは 異なる結果であった.MGAS は身体前傾時に収縮し,TA は身体後傾時に収縮した(Fig.8, 9, 10).

Fig.9 ∠Tendon

4. 考察

4.1 受動的身体前後動摇

受動的身体前後動揺時,モーションベースにより被検者 に前後方向の外乱を印加し,前後動揺を誘発した.このと き COM 変化量が小さいこと,足関節回転中心の変位量の 割合が高いため,受動的身体前後動揺では身体は COM を 中心に足部を移動させる動作であったと考えられる.足関 節トルクは,足部の移動が姿勢を前後に変調させる受動的 動作の特性と COM 位置を保つ姿勢安定性の要素が影響し たと考えられる.

身体後傾時に MGAS の筋活動量が増加する傾向がみら れた.MFL は身体前傾時に伸張し,後傾時に短縮したこと から,MGAS はコンセントリック収縮であった.足関節回 転中心と COM の位置関係は変化したが,MFL は Yamamoto らの結果⁽⁵⁾とは異なり,筋全体が短縮するフェーズにおい て MFL は短縮する傾向であった.身体後傾時における MGAS のコンセントリック収縮は足関節を底屈させる動作 である.この挙動は足関節トルクの作用方向をアシストす る効果もある.

受動的身体前後動揺は、矢状面で随意的身体前後動揺と 同様の姿勢だが、足関節を回転中心とした前後動揺でない ため"Paradoxical muscle movement"の挙動を示さなかった と考えられる.また、受動的身体前後動揺は受動的な姿勢 安定性が備わっているためヒトの姿勢安定戦略が発揮され なかった可能性がある.

4.2 随意的身体前後動摇

随意的身体前後は足関節を回転中心として, COM を前 後に動揺させる動作であった. そのため, 足関節トルクは 受動的前後動揺時と逆位相になり, COM 変化と同方向に 作用したと考えられる.

身体前傾時に MFL・Tendon 共に伸張する傾向であった. この MFL の挙動は, Loram ら⁽⁴⁾, Yamamoto ら⁽⁵⁾とは異な る結果であった. Loram らは"Paradoxical muscle movement" には予測的な筋活動が要因としているため,今回の計測時 間が予測的姿勢制御に至るまでの十分な時間でなかった可 能性がある.また, "Paradoxical muscle movement"は COM 位置が前傾した際に転倒しないよう COM 変化とは逆方向 への足関節トルクの作用も要因である⁽⁵⁾. COM 変化とは逆 方向の足関節トルクが十分に作用しなかったため, MGAS は"Paradoxical muscle movement"の挙動を示さなかったと 考えられる.

Yamamoto らは、随意的身体前後動揺実験において COP を追従波形として、Visual Feedback を行っていた⁽⁵⁾. COP を目標波形に追従させるには、身体全体を駆使する必要が ある.そのため股関節を有効に活用していたと考えられる. 今回の実験系は足関節角度変化を追従波形として Visual Feedback を行った.そのため、前後動揺において股関節を 十分に活用していなかった可能性がある.

5. まとめ

受動的身体前後動揺と随意的身体前後動揺において, MGASは異なる挙動を示した.身体は前後動揺しているが, 動作方法が異なるためと考えられる.また,受動的身体前 後動揺時の筋活動量は随意的身体前後動揺時と比べると小 さかった.これは受動的に姿勢安定性が保たれるため,活 発に筋活動する必要がなかったと考えられる.今回,姿勢 安定性に応じた筋のバランス維持の調節戦略を確認できた. 今後の展望として,受動的身体前後動揺と随意的身体前後 動揺による姿勢変調の精度を高くする.股関節角度変化に も注目し、被検者数を増やす.また、相互相関関数を用い て解析項目別にタイムラグを算出する.

参考文献

- David A. Winter, Aftab E. Patla, Stiffness control of balance in quiet standing, J Neurophysiol, 80, pp. 1211-1221, 1998.
- (2) Pietro G. Morasso, Vittorio Sanguineti, Ankle muscle stiffness alone cannot stabilize balance during quiet standing, J Neurophysiol, 88, pp.2157-2162, 2002.
- (3) Constantinos N. Maganaris, Vasilios Baltzopoulos, Human calf muscle responses during repeated isometric Plantarflexions, J Biomech, 39, pp.1249-1255, 2006.
- Ian D. Loram, Constantinos N. Maganaris, Paradoxical muscle movement in human standing, J Physiol, 556, pp.683-689, 2004.
- (5) S. Yamamoto, C. Shimizu, H.Yamamoto, N. Sasagawa, T. Miyoshi, H.koyama, T.Komeda, Different contraction pattern of lower leg muscle fiber between swaying and tiptoe standing in human upright posture, IFMBE, 22, pp.2128-2132, 2008.
- (6) Grieve D. V, Pheasant S, Prediction of gastrocnemius length from knee and ankle joint posture, In Biomechanics 2A, pp.405-412, 1978.