足部アーチの力学特性が歩行動作に与える影響に関するシミュレーション解析

Simulation analysis on effect of foot arches mechanical properties on walking motion

○ 内藤 尚 (阪大), 高嶋 孝倫 (国リハ学院), 長谷 和徳 (首都大)

松本 健志 (阪大), 田中 正夫 (阪大)

Hisashi NAITO, Osaka University Takamichi TAKASHIMA, College, NRCD Kazunori HASE, Tokyo Metropolitan University Takeshi MATSUMOTO, Osaka University Masao TANAKA, Osaka University

Key Words: Simulation Study, Foot Arch Stiffness, Walking

1. はじめに

足部は、28 の骨からなり、54 箇所で関節を構成する複雑 な構造体である.その機能面では、立脚・歩行時の路面と の力学的インターフェースとして、衝撃の吸収や床面から の荷重を支持するなど重要な役割を果たしている.足部疼 痛などの障害は快適な歩行を妨げる要因になり易く、種々 の障害予防・治療法が提案されているが、それらの有効性 は十分明確になっていない.障害の原因や治療法を検討す るためには、障害の発生時および予後に起こっている現象 の理解と、それを妥当にモデル化することが欠かせない. 妥当なモデルの構築に際しては、実際の症例と比較検討し、 モデルを改良してゆくというプロセスを繰り返して行くこ とが現実的な手法の一つであると考えられる.

本研究の目的は、足部の特性が立脚時・歩行時の足部の 挙動および全身の歩行運動の双方に与える影響を評価する ことのできるモデルを構築することである.本報では、歩 行時の足部節の関節間の変形を考慮した二足歩行順動力学 的シミュレーションモデルを構築し、足部のアーチに着目 し、その変形剛性が歩行および足部の力学的挙動に与える 影響について調べた.

2. モデルとシミュレーション 2-1 足部節剛体リンクモデル

床面からの反力を受ける節として,図1に示す様に足部 節を各中足指節関節より遠位は省略し,3節(I節:距骨・ 踵骨,II節:舟状骨・全楔状骨・第一から第三までの中足 骨,III節:立方骨・第四・五中足骨)に分割した.足部節 の関節として,距腿間関節(内果と外踝を結んだ線)およ び距骨下関節(踵骨外側突起と舟状骨内側突起を結んだ線) の各軸を足関節内果と外踝間の中心位置に配置し,距舟関 節,踵立方関節を各関節の位置に,回転軸の向きは距腿間 関節と同様にして配置した.各関節の運動に関連する筋群 として前脛骨筋,後脛骨筋,ヒラメ筋,腓腹筋,短腓骨筋,

Fig. 1 Schematic of foot segment model.

母趾外転筋,小趾外転筋を考慮した.また,距舟関節およ び踵立方関節の関節受動抵抗を,関節角度に比例した抵抗 を発生する受動関節とし,受動抵抗モーメント *M_i*を中立 角度からの変化量*θ_i*--*θ₀*:および角速度に比例した関数,

$$M_{i} = k(\theta_{i} - \theta_{0i}) + c\dot{\theta} \qquad i = 1, 2 \tag{1}$$

で表す.床面と接触する足部の点として,A節の踵下部に 4点,B節の第一および第三中足骨末節部分に各1点,C 節の第四および第五中足骨末節部分に各1点の合計8点を 定義する.各特徴点および各節の座標・寸法は解剖学図や 足部模型を参考に決定した.

2-2 神経筋骨格系をもつ身体モデル

全身のシミュレーションモデルは, 並進 3+回転 30 の自 由度を持つ剛体リンクと合計 74 の筋肉をモデリングした 筋骨格モデル,合計関節自由度に対応する27の神経振動子 の回路網からなる神経モデル、を統合した神経・筋骨格モ デルである⁽¹⁾.このモデルに筋骨格系と神経系のパラメー タと外部環境などの初期状態を与え,数値積分する事で, 順動力学的に運動が生成される.このモデルでは,運動制 御をおこなう神経系パラメータの値が適切に選択されない 場合,歩行の生成にはいたらず、1歩も歩けずに転倒して しまう. 運動が歩行動作になるには、パラメータの調整が 必要であり、ここでは、生成された運動が歩行動作に近づ くと高い評価を与える関数を定義し、パラメータの調整方 法として遺伝的アルゴリズムを用いる. 今回は, 生成され た運動が規程の歩数の歩行に達するまでは、転倒するまで の歩数と移動距離からなる関数を評価関数とし、規程の歩 数の歩行が生成されてからは、移動効率を表す関数に床反 カベクトルの大きさがある値を超えた量の時間積分値をペ ナルティとして導入した関数を評価関数として用いた.

2-3 計算条件

足部の距舟関節, 踵立方関節の受動抵抗特性を変更する ことによって, 足部の挙動および全身の歩行運動の双方が 受ける影響を調べる. 今回は, k の値を弾性抵抗が働かな い状態から関節を拘束するまでの間(k = 0, 1, 15, 100, 200, 400,∞(拘束:足部節を一体の剛体とした))で変動させ, その他の身体パラメータは同様の条件で 16 歩を規定の歩 数として,歩行生成のためのパラメータ調整を行った.歩 行生成の際のパラメータ調整に関しては,神経系パラメー タ,微分方程式の初期値などの調整の初期条件は各モデル 間で同様とし, 200,000回の試行(計算時間は 16CPU(Quad-Core AMD Opteron(tm) Processor 8354 × 4)の

(社) 日本機械学会 [No.10-52] 生活生命支援医療福祉工学系学会連合大会2010講演論文集 〔2010.9.18-20, 豊中 〕

クラスタシステムを用いておよそ 72 時間)を基準として計算を行った.

3. 結果

神経パラメータの調整を行った結果,足部アーチの弾性係 数 k が 15 [Nm/rad]以上のモデル全てにおいて,16 歩の歩行 が生成された.代表例として, k が 15,100,400, ∞ (拘束) [Nm/rad]の条件(これ以降,それぞれ Case A, B, C, D とよ ぶ)で生成されたもののうち,平均歩行速度が類似したも の(約 1.5[m/s])を抽出し比較を行う.図 2 に,各条件におけ る右側 6 歩分の踵接地から一歩行周期分の床反力鉛直成分 および前後方向成分,足関節底背屈,距舟関節(内側アー チ),膝関節および股関節屈伸角度の変化を示す.赤および 青線で各データの平均値を,グレーの線で標準偏差を表す. 床反力は,鉛直上向きおよび前方向の力を正,関節角度は, 足関節背屈を正,距舟関節はアーチがつぶれる方向を正, 膝および股関節は屈曲方向を正の値で示した.

まず、特に顕著な差が表れた Case A とそれ以外のデータ に着目する.床反力データでは、鉛直方向のデータにおい て図2a) に示した Case A の歩行で, 3 つのピークが表れて おり、2つ目のピークが最大値を示している.この2つ目 のピークはフットフラットによって起きていると考えられ るが、Case A で見られるピーク値が今回示した中で最も高 い. また, Case A における足関節および距舟関節の角度で は、他と比較して大きな変化が現れており、距舟関節は立 脚期後期に80度ほど変形し、それと時間的にはほぼ同じ時 期に足関節において 80 度に達する最大底屈角度のピーク が現れている. その他の条件では、アーチの関節剛性が増 大するにつれてアーチの角度変化量は小さくなっており, その角度変化は概ね立脚期にのみ起こっている. さらに, 膝関節の角度では、どの条件でも Double knee action と一般 に呼ばれる、立脚初期の軽度屈曲及び遊脚期の1周期で2 回の屈曲動作が表れている様子がわかる. その軽度屈曲の 最大角度は、Case A でのみ 10 度近く高く、その他の条件

Fig. 2 Ground reaction forces, angles of talonavicular joint, ankle joint, knee joint and hip joint during one gait cycle in the case that k is 25, 100, 400 and talonavicular and calcanecuboid joints are fixed.

Fig. 3 Moment patterns generated in ankle joint and talonavicular joint during one gait cycle in the case that k is 25, 100, 400 and talonavicular and calcanecuboid joints are fixed.

ではそれほど顕著な差は見られない.また,股関節の屈伸 角度変化については条件ごとに顕著な差は見られなかった.

次に、各条件における足関節底背屈モーメントおよび距 舟関節モーメントを図3に示す.図2と同様の時間軸で横 軸をとり、赤および青線でそれぞれ足関節底背屈,距舟関 節モーメントの平均値を示し、グレーの線で標準偏差を示 した.足関節底屈方向およびアーチを維持する方向(足趾 を底屈する方向)のモーメントを正で示した.ただし、Case Dでは距舟関節は考慮せず、足部の3つの節を一体の剛体 として取り扱っているために、距舟関節の関節モーメント は描いていない.

足関節モーメントに関しては、Case A では立脚期中期付 近から底屈モーメントが平坦になる部分があるが、どの条 件においても、おおむね立脚初期において背屈モーメント が発揮され、その後立脚期中期付近に最大の底屈モーメン トが表れている.また、距舟関節は、Case A, B, C と関節剛 性が高くなるに従い、発生しているモーメントの最大値が 大きくなるという傾向が現れているが、立脚期初期から後 期にかけて増大していくという関係は、3 つの条件でほぼ 類似している.

4. 考察

4-1 距舟関節の角度と発揮モーメント

受動抵抗要素の弾性係数 k の値によって, 距舟関節の角 度変化には顕著に差異が表れた.特に, Case A ではその角 度変化は80度に達しており、その代償的動作と考えられる 大きな足関節の底屈動作が表れていた.本報で距舟関節と して定義した前足部と後足部の角度は、立脚期に初期から 後期にかけてアーチがつぶれる方向に変化し、その最大値 は無負荷時を中立位として 10 度程度であることが計測さ れている⁽²⁾⁽³⁾. この値に比べると Case A で表れた角度変化 の最大値は非常に大きい.角度変化の最大値としては, Case B が近い値となった.一方,距舟関節の関節モーメントで は、Case A、B、C間で関節角度変化ほどの顕著な差は見られ なかった.これらを考え合わせると,今回はどの条件でも, 足で床面を蹴り出すのに必要な関節モーメントを発揮させ るためには、受動抵抗要素でモーメントを生成するという 戦略をとっており、その際に受動抵抗の剛性特性に応じた 関節角度の変化が表れていると考えられる.

本報で受動抵抗の弾性係数として表したkの値に類似した特性値として、歩行中の内側アーチの関節モーメントを角度で割った値である Dynamic joint stiffness⁽⁴⁾を歩行計測

から求めた結果⁽⁵⁾において,歩行中にその値が 200~560 [Nm/rad]の範囲で変動することが指摘されている.この変 動は,関節受動抵抗によるモーメントに加えて,筋活動に よる能動的な関節モーメントの調整によって生み出されて いると考えられる.今回の結果では,距舟関節の関節モー メントでは,筋活動によって能動的に発揮されたモーメン トはほとんど寄与しておらず,ほぼ受動抵抗によって発揮 されたものとなっており,計測結果のように係数の変動は 再現されなかった.今回の計算でなぜ距舟関節周りの能動 的なモーメントが表れないかはまだ特定できていないが, その原因としては,考慮するべき筋および最大筋力が不足 している,能動的な筋力が発生すると結果として移動効率 が悪くなり,評価関数の値を低くなる,足と床面の接触面 モデルの剛性が不適切,などいくつかの要因が考えられ今 後調べてゆく必要がある.

4-2 距舟関節の受動抵抗の弾性係数について

距舟関節の静的な受動抵抗はあまり計測された例がなく, どのくらいの値にすることが適当か不明であるため,今回 は幅広く k の値を変動させた条件で計算を行った.今回の 結果とこれまで得られている実験結果を比較すると, k の 値は 100 [Nm/rad]より小さく,立脚中期から後期にかけて 筋により能動的に発揮されるモーメントによって結果的に 見かけ上の剛性が上昇するという因果関係があることが示 唆される.本シミュレーションモデルにより,実験結果を 再現するためには,距舟関節に関連する能動的な筋が活動 するモデルを用いるという前提で,15~100 [Nm/rad]の範囲 で計算することが有効であると考えられる.ただし,この ような推定値は,足部の構造的特徴および筋の走行と歩行 中の筋活動を考慮して受動抵抗特性を計測する実験により 妥当性を検討してゆく必要がある.

本研究の一部は大阪大学グローバル COE プログラム「予測 医学基盤」および科学研究費補助金(若手(B) 20700462, 基 盤(C) 20500640, 若手(A) 22680046)の支援を受けた.

参考文献

- 内藤ら,バイオメカニズム学会誌, 29-1, pp. 160-169, 2005.
- (2) 高嶋ら, 機論C, 68-672, pp. 2425-2430, 2001.
- (3) Chang, et al., J. Biomech., 41, pp. 3101-3105, 2008.
- (4) Davis and DeLuca, Gait&Posture, 4-3, pp. 224-231, 1996.
- (5) 高嶋ら, 機論C, 67-663, pp. 3513-3518, 2001.